
Code Management using CVS 17-1

Chapter 17: Code Management using CVS

This chapter introduces the recommended code management solution for
UNIX, CVS (Concurrent Versions System). Here we provide basic
information only; for more detailed information, see
http://www.fnal.gov/docs/products/cvs/.

17.1 About CVS

CVS uses RCS (Revision Control System) as the underlying protocol and
assumes availability of RCS commands. RCS provides a version control
system with which you can record the history of your source files. An RCS
file contains multiple revisions of text, an access list, a change log, descriptive
text, and some control attributes. Only the differences between versions are
kept.

The CVS product allows many programmers to work on the same code
simultaneously, each in his or her own directory, and it merges the changes
when they are finished. There is no built-in mechanism to prevent concurrent
development.

Users can create tags for release versions of software, and easily extract either
a release verision or the latest version.

CVS stores all files in a central repository, a directory populated with a
hierarchy of files and directories. The files are organized in modules, where a
module is made up of one or more files, and can include files from several
directories. It is typical to define one module per project. Although the
structure of the repository and modules file interact with your build system
(e.g., Makefiles), they are essentially independent.

17.2 Accessing CVS

To set up the CVS product:

% setup cvs

17-2 Code Management using CVS

The CVS document (in postscript format) can be found in the directory pointed
to by $CVS_DIR/doc. You can also find documentation on the Web for
CVS, as mentioned above.

Normally you never access files in a repository directly; you use the CVS
commands to get your own copy of files.

Note that CVS points to the editor defined in your EDITOR variable for entering
log messages (see the cvs commit command below). If it is not set, the
editor defaults to vi.

17.3 Basic CVS Commands

The common commands and their functions are listed below (we do not
provide information on options here; see the document referenced above):

% cvs import installs new release of source in CVS repository
the first time

% cvs co <module> creates new directory called <module>,
populates it with source files; this allows you to
“checkout” your own working copy of the
source <module>

% cvs checkout <module>equivalent to cvs co <module>

% cvs commit commits changes you have made; opens editing
session for entry of log message

% cvs rtag <release_number module>

tags a release

% cvs export -r <release_number module>

 extracts the specified release without CVS
administrative directories

